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Abstract.
Background: APOE �4 and sex have been linked to increased risk for conversion to Alzheimer’s disease (AD). However,
the relationship between APOE �4 gene dose, sex, and AD biomarkers remains understudied.
Objective: To investigate the effect of APOE �4 dose on AD biomarkers in a sample of older adults with mild cognitive
impairment (MCI), and to examine whether APOE �4 dose modifies AD risk differently in MCI women and men.
Methods: We examined cross-sectional AD biomarkers for participants with MCI (n = 930, 55–96 years old) from three large
aging cohorts. Region of interest MRI volumes, global cognition, and episodic memory were analyzed by number of APOE
�4 alleles and stratified by sex.
Results: Across all participants, number of APOE �4 alleles was associated with smaller hippocampal and amygdala volumes
and poorer cognition. When stratified by sex, women showed an APOE �4 dose effect for bilateral hippocampal and left
amygdala volumes and cognition. In contrast, men showed an APOE �4 dose effect for hippocampal volumes with a trend
in amygdala, but cognition did not differ between men with 1 and 2 APOE �4 alleles. Women with 2 APOE �4 alleles had
poorer memory between 65–69 and poorer global cognition between 70–74 compared to men with 2 APOE �4 alleles.
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Conclusion: APOE �4 confers a dose effect on AD biomarkers in patients with MCI, and the number of APOE �4 alleles
has a greater detrimental impact in women than men, which may be specific to a critical time window.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia. Currently, there are no effective
treatments for AD, creating a critical public health
concern [1]. Because it is likely that effective ther-
apies will require early intervention, understanding
the role of AD risk factors, such as apolipoprotein
E �4 (APOE �4) and sex, is critical for identifying
individuals who are at greatest risk [2].

The greatest known genetic risk factor for late-
onset sporadic AD is the APOE �4 allele [3]. APOE
�4 is more prevalent in people with AD compared to
cognitively normal individuals [4, 5], and extensive
research has demonstrated that relative to APOE �3,
APOE �4 significantly increases the risk of develop-
ing mild cognitive impairment (MCI) [6] and AD [7,
8]. One APOE �4 allele increases risk by 2- to 3-fold,
and 2 alleles increase risk by 10-fold [5, 9]. While a
number of studies have shown that AD risk increases
as the number of APOE �4 alleles increases [5, 10],
few have examined the effect of APOE �4 dose on
specific biomarkers for AD. Evidence for an APOE
�4 dose effect on cognitive and MRI biomarkers is
needed.

Female sex is another major risk factor for AD [11].
Studies that have examined the interaction between
APOE �4 and sex suggest that women may be more
adversely affected. Indeed, 1 APOE �4 allele has
been shown to increase lifetime AD risk in women,
whereas 2 APOE �4 alleles increased lifetime risk
in men [5]. Similar APOE �4 by sex effects have
been observed for hippocampal volumes [12]. A
recent meta-analysis of approximately 58,000 sub-
jects reported a critical time window starting at 65
years old in which women with APOE �4 are at
greater risk of conversion than men with APOE �4
[13]. Another recent paper examined the longitudi-
nal differences between men and women and the
effect of APOE �4 status across the AD spectrum
on hippocampal volume, cognition, and association
with cerebrospinal fluid (CSF) biomarkers of tau and
amyloid [14]. The findings from this study suggest
pronounced sex differences exist within the MCI
stage, motivating additional explicit examination of
this phase of disease progression.

In the present study, we examined the effects of
APOE �4, sex, and their interaction on MRI brain vol-
umes and cognition in a sample of older adults with
MCI [15] via within-sex and between-sex analyses.

METHODS

Study design

De-identified and coded data from 930 partic-
ipants with MCI between 55–96 years old were
acquired with permission from three aging cohorts:
The Alzheimer’s Disease Neuroimaging Initiative
(ADNI), the National Alzheimer’s Coordinating Cen-
ter (NACC), and the Australian Imaging, Biomarker
& Lifestyle Study (AIBL). This study was approved
by our local institutional review board as non-human
subjects research. Subjects with a baseline diagno-
sis of MCI with a probable etiology of AD were
included. APOE �4 carriers who may have conferred
protection from AD [16] were excluded from the
analysis to include only those who were APOE �3/�3,
APOE �3/�4, and APOE �4/�4. Participants with no
available diagnosis, genetic information for APOE,
imaging and cognitive data, less than 6 years of edu-
cation, or possible co-enrollment across cohorts were
excluded. Variables were harmonized across datasets.
For example, education was binned into 4 groups
to enable comparison with the AIBL dataset: 6 to
8 years, 9 to 12 years, 13 to 15 years, and 15 + years.

Datasets

Data from the ADNI (n = 723), NACC (n = 121),
and AIBL (n = 86) cohorts were aggregated to cre-
ate the final dataset for analysis (n = 930). ADNI was
launched in 2003 as a public-private partnership with
the primary goal of testing whether serial collection
of imaging, biomarker, clinical, and neuropsycholog-
ical data can be combined to measure the progression
of MCI and early AD [17]. AIBL is an ADNI col-
laborative study established in the Australian cities
Melbourne and Perth in 2006 in order to assemble a
cohort of individuals who could be assessed at reg-
ular intervals for AD [18]. NACC was established
by the National Institute on Aging in 1999 to sup-
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port collaborative research in AD from participants at
34 past and present NIH-funded Alzheimer’s Disease
Centers (ADCs) [19].

All three cohorts collect imaging, genetics, cog-
nitive, and biological biomarker data, and evaluate
enrolled participants approximately every 12–18
months with a comprehensive cognitive battery and
clinical assessment. Diagnostic classification for
study participants in the ADNI and AIBL cohorts
are determined by a clinician or physician, and diag-
noses are monitored by a clinical review committee
to ensure uniform application of the diagnostic crite-
ria across sites. NACC aggregates data from multiple
ADCs, and diagnoses are made either by a physi-
cian or by a consensus committee, according to each
ADC’s protocol. A detailed description of how MCI
is determined for each cohort is included in the Sup-
plemental Materials. ADNI, AIBL, and NACC data
collected between August 2005 and October 2014
were included in this study.

Brain imaging and quality control

Baseline T1-weighted MPRAGE MRI images
from both 1.5T and 3T scanners were downloaded
with authorization from ADNI, AIBL, and NACC
databases and processed using FreeSurfer software
version 5.3.0 (http://surfer.nmr.mgh.harvard.edu,
Boston, MA) [20]. Hippocampal volumes were
selected a priori as the region of interest based on
its relevance to cognition and AD. Exploratory MRI
analyses included total gray matter brain volume and
five additional brain regions in medial and lateral
temporal lobes that have shown sex and APOE
differences [51] that are affected in early AD [21–
23]. All hippocampal output volumes were visually
inspected and scored by two experienced raters using
ITK-SNAP software version 3.4.0 (http://www.itksn
ap.org) for accuracy [24]. Segmentations failed if a
substantial segmentation error was identified, defined
as an unambiguous mislabeling of a substantial por-
tion of the total volume. 131 (14.1%) subjects were
excluded from the analysis for poor segmentation
accuracy. Subjects who failed quality control or
had more than 12 months between cognitive and
MRI acquisition were excluded from hippocampal
analyses but included in the cognition analyses.

Cognitive tests

Baseline scores from the Mini-Mental State Exam-
ination (MMSE) [25, 26] and Immediate Recall and

Delayed Recall from the Wechsler Memory Scale
- Revised (WMS-R) [27] Logical Memory tests
were examined as measures of global cognition and
episodic memory, respectively. These were the com-
mon cognitive tests available across the cohorts.

APOE �4 gene dose

APOE �4 dose was defined as the number of APOE
�4 alleles (0, 1, or 2) carried by a participant. An
APOE �4 dose effect was defined as a significant dif-
ference that corresponded with the number of APOE
�4 alleles, in which the effect was significant between
0 versus 1 allele, and 1 versus 2 alleles. By this
definition, each APOE �4 allele had a significant,
measurable effect on the biomarker and thus may
have increased AD risk.

Statistical analysis

Analysis of covariance (ANCOVA) was used to
assess the effect of number of APOE �4 alleles on
MRI brain volumes and cognition using SPSS ver-
sion 25. Main effects of APOE �4 dose and sex
in the entire sample was assessed, along with main
effects of APOE �4 dose when stratified by sex and
5-year age bins. Cohort, baseline age, and education
were included as covariates. Total intracranial vol-
ume and scanner field strength were also included as
covariates when analyzing brain volumes. Post-hoc
pairwise comparisons were used to examine group
differences based on the number of APOE �4 alle-
les. Because of our a priori hypothesis that APOE �4
effects may differ by sex, brain volumes, and cogni-
tion were examined separately for women and men.
Post-hoc pairwise comparisons of brain volumes and
cognition by APOE group were tested via within-
sex and between-sex analyses. Additionally, APOE
�4 effects across the aging spectrum were examined
at each 5-year period, separately for women and men,
and predicted values for cognition were derived from
models with factors for age, APOE �4, cohort, and
education. Sex and APOE �4 dose-dependent effects
are expected to be subtle, especially given the low
prevalence of �4/�4 carriers, therefore results were
not corrected for multiple comparisons.

RESULTS

Participant demographics

Demographic data for the study population by
APOE �4 genotype are summarized in Table 1. Par-

http://surfer.nmr.mgh.harvard.edu
http://www.itksnap.org
http://www.itksnap.org
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Table 1
Sample Characteristics, Hippocampal Volume and Cognitive Measures stratified by Sex

Women Men
�3/�3 �3/�4 �4/�4 �3/�3 �3/�4 �4/�4

n = 189 n = 153 n = 48 n = 250 n = 226 n = 64

Age, range 56–96 55–92 57–83 55–90 56–89 55–87
Age, mean 74.2 71.4 69.2 74.6 74.7 71.5
Education, group ∗ 4.3 (0.9) 4.1 (1.0) 4.3 (0.9) 4.4 (0.9) 4.5 (0.8) 4.5 (0.9)
Brain Structure, mm3

Left Hippocampal Volume 3238 (626) 3151 (616) 3018 (489) 3411 (615) 3275 (598) 3172 (569)
Right Hippocampal Volume 3371 (630) 3254 (640) 3117 (477) 3548 (647) 3403 (643) 3373 (570)

Cognition
CDR Global 0.49 (0.1) 0.49 (0.1) 0.5 (0) 0.49 (0.09) 0.5 (0.06) 0.5 (0.09)
MMSE 27.7 (2) 27.2 (2.1) 26.7 (2.2) 27.5 (2) 27.1 (2.1) 27.05 (2.1)
WMS-R Immediate Recall 8.8 (3.5) 7.6 (3.4) 6.9 (3.2) 8.5 (3.5) 7.8 (3.7) 7.8 (3.2)
WMS-R Delayed Recall 6 (3.4) 4.4 (3.4) 3.3 (3.3) 5.9 (3.5) 5.1 (3.6) 5 (3.4)

Data are presented as mean (standard deviation) unless otherwise specified. CDR Global, Global Clinical Dementia Rating Score; MMSE,
Mini-Mental State Examination; WMS, Wechsler Memory Scale - Revised; �3/�3, two APOE �3 alleles; �3/�4, one APOE �4 allele; �4/�4,
two APOE �4 alleles. ∗Education groups are 1 = 7-8, 2 = 9–12, 3 = 13–15, 4 = 15+.

ticipants were predominately white (84%). The ratio
of women:men did not differ significantly by APOE
�4 group (p = 0.75). Average years of education did
not differ by APOE �4 group (p = 0.79); however,
the average years of education was significantly
higher for men than for women (p = 0.001). Age dif-
fered significantly by APOE �4 genotype (p < 0.001).
Participants with 1 APOE �4 allele were younger
than those with 0 APOE �4 alleles (p = 0.026) and
those with 2 APOE �4 alleles were younger than
those with 1 APOE �4 allele (p = 0.001). Participant
demographics are also shown separated by cohort in
Supplementary Table 1.

Biomarkers across all participants

Hippocampus
There was a main effect of APOE �4 dose for left

and right hippocampal volumes, our a priori ROI (left
& right, p’s < 0.001). Post-hoc tests showed smaller
left and right hippocampal volume with each APOE
�4 allele in a dose-dependent manner (0 > 1 > 2, all
ps < 0.001) (Fig. 1).

Among the exploratory MRI volumes, a main
effect of APOE �4 was also seen bilaterally in
the amygdala (p < 0.0001) (Fig. 2, Supplementary
Table 2). Post-hoc tests showed a dose-dependent
response in the left (0 > 1 > 2, p ≤ 0.001) and right
(0 > 1 > 2, p < 0.05) hemispheres. No dose depen-
dent differences were seen in the other brain regions
(Fig. 2). Effect size, standard error (SE), and signif-
icance are reported in Supplementary Table 2 for all
ROIs.

Cognition
For cognition, there was a significant main effect

of APOE �4 dose on MMSE, Immediate Recall, and
Delayed Recall across all participants (all ps < 0.001)
(Fig. 1). Post-hoc comparisons showed that worse
performance on MMSE and Delayed Recall was asso-
ciated with each APOE �4 allele in a dose-dependent
manner (0 > 1 > 2). Participants with 1 APOE �4 allele
had significantly worse cognitive performance on all
tests than non-carriers (all ps < 0.001), and partici-
pants with 2 APOE �4 alleles had significantly worse
performance than those with one allele on MMSE
and Delayed Recall (all ps < 0.05).

APOE �4 dose effects

Between-sex analyses
For age, between-sex analyses showed there was

no difference between women and men with no
APOE �4 alleles (p = 0.57). However, women with 1
APOE �4 allele were younger than men with 1 APOE
�4 allele (p < 0.001). Similarly, women with 2 APOE
�4 alleles were younger than men with 2 APOE �4
alleles (p = 0.03).

For between-sex analyses of hippocampal volume,
left hippocampal volumes were significantly smaller
for women than men with 1 APOE �4 allele, while
right hippocampal volume was significantly smaller
for women than men with 0, 1, or 2 APOE �4 alleles
(all ps < 0.05). Sex-differences were also observed in
the left and right amygdala for women with 0, 1, and
2 APOE �4 alleles relative to men (all ps < 0.002).
No dose dependent effects (0 versus 1 versus 2)
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Fig. 1. Hippocampal volume and cognitive performance by number APOE �4 alleles. A) Hippocampal volume (HCV) and cognitive
performance on the Mini-Mental State Examination (MMSE) (B), Wechsler Memory Scale- Revised Immediate Recall (C) and Delayed
Recall (D) stratified by number of APOE �4 alleles. ∗p < 0.05; ∗∗p < 0.001.

Fig. 2. Significance heatmaps for brain regions of interest. Region of interest p-value heatmaps showing significant APOE �4 effects for all
participants, sex-stratified effects, and the main effects of sex by APOE �4 allele.
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were observed in other ROIs (Fig. 2, Supplementary
Table 2).

For cognition, delayed recall differed by sex, such
that women with 2 APOE �4 alleles had lower delayed
recall scores than men with 2 APOE �4 alleles
(p = 0.005). A trend for the same pattern was observed
for men and women with 1 APOE �4 allele (p = 0.078)
There were no sex-specific differences on MMSE or
immediate recall.

Sex-stratified analyses
Sex-stratified analyses showed an APOE �4 dose

effect of age for women with 1 or 2 APOE �4 alle-
les compared to women with 0 APOE �4 alleles (all
ps < 0.0001), but no age difference between women
with 1 and 2 APOE �4 alleles (p = 0.19). Men were
only of a younger age if they had 2 alleles when
compared to men with 1 APOE �4 allele (p < 0.005).

When stratified by sex, the APOE �4 dose effect
on hippocampal volumes remained significant for
both women and men, separately (all ps ≤ 0.05). No
differences were observed between left and right
hippocampal volumes, so analyses combined left
and right hippocampi. In women, post-hoc analyses
showed that those with 1 APOE �4 allele had smaller
hippocampal volumes than those with 0 APOE �4
alleles, and those with 2 APOE �4 alleles had smaller
hippocampal volumes than those with 1 APOE �4
allele (all ps < 0.05). Men showed a similar pattern,
such that those with 1 APOE �4 allele had smaller
hippocampal volumes than those with 0 APOE �4
alleles, and those with 2 APOE �4 alleles had smaller
hippocampal volumes than those with 1 APOE �4
allele (all ps < 0.05) (Fig. 3). The above analyses
were repeated using a residual normalization method
for the left and right hippocampi against intracranial
volume, and the significance of the results remained
unchanged.

In women, an APOE �4 dose dependent volumet-
ric difference was observed in the left amygdala, such
that women with 1 APOE �4 allele had smaller vol-
umes than women with 0 APOE �4 alleles (p = 0.016)
and women with 2 APOE �4 alleles smaller than
women with only 1 APOE �4 allele (p = 0.019).
For women with 1 APOE �4 allele compared to
women with 0 APOE �4 alleles, smaller volumes
were observed in the right amygdala, left and right
inferior parietal cortex, the right middle temporal
lobe, and in total brain volume (all ps ≤ 0.05; Fig. 2;
Supplementary Table 2). In men, the left and right
amygdala were smaller for men with 1 APOE �4
allele than men with 0 APOE �4 alleles (all ps < 0.05;

Fig. 3. Hippocampal volumes by number of APOE �4 alleles and
sex. Hippocampal volume (HCV) stratified by number of APOE �4
alleles and sex. Because there was no difference between left and
right HCV, the figure depicts total hippocampal volume (combined
left and right). ∗p < 0.05; ∗∗p < 0.001.

Fig. 2; Supplementary Table 2). No other APOE
�4 dose differences in the other brain regions were
observed for men.

Sex-stratified analyses showed that women had a
significant APOE �4 dose effect, with lower scores
with each APOE �4 allele for all cognitive tests
(all ps, p < 0.05). In contrast, men showed lower
scores for those with 1 APOE �4 allele compared
to those with 0 APOE �4 alleles for all cognitive tests
(MMSE: p = 0.011, Immediate Recall: p = 0.015,
Delayed Recall: p = 0.004); however, there was no
difference in cognition between men with 1 or 2
APOE �4 alleles (Fig. 4).

Age-specific effects
Based on our recent work demonstrating a rela-

tionship between APOE �4 status, sex, and age [13],
we examined the effect of age and APOE �4 on our
biomarkers. There was no significant age by APOE
�4 interaction on the AD biomarkers (all ps > 0.14).
In age-stratified analyses of 5-year bins, there was a
trend for an APOE �4 by sex interaction on delayed
memory in those 65–69 years of age (p = 0.09). Addi-
tionally, there was a trend for an APOE �4 by sex
interaction on the MMSE for those 70–74 years of age
(p = 0.06). Post-hoc analyses in this age group showed
that women with 2 APOE �4 alleles performed worse
than men with 2 APOE �4 alleles on delayed memory
(65–69 years, p = 0.047) and MMSE (70–74 years,
p = 0.004) (Fig. 5). There were no significant differ-
ences at the other 5-year age bins.

DISCUSSION

Understanding the contribution of number of
APOE �4 alleles and how these effects are mod-



Z. Hobel et al. / APOE �4 Gene Dose and Sex Effects on Alzheimer’s Disease 653

Fig. 4. Cognitive performance by number of APOE �4 alleles and sex. Cognitive performance on the Mini-Mental State Examination
(MMSE) (A), Wechsler Memory Scale- Revised Immediate Recall (B) and Delayed Recall (C), stratified by APOE �4 alleles and sex.
∗p < 0.05; ∗∗p < 0.001.

ified by sex and age is important for determining
AD risk [28, 29]. In the present study, we showed
an association between number of APOE �4 alleles
and the AD biomarkers for hippocampal and amyg-
dala volume and cognition in older adults with MCI,
providing insight into those at risk for AD. Impor-
tantly, we demonstrated that the effect of APOE
�4 dose on cognition differs by sex and prelim-
inary, exploratory analyses suggest that cognitive
differences for women compared to men exist
between 65–69 for episodic memory and between
70–74 for global cognition. While APOE �4 dose is
associated with smaller hippocampal volume in both
sexes, 2 APOE �4 alleles may have a greater impact
on cognition in women than in men.

Across all participants, those with 2 APOE �4
alleles were significantly younger than those with 1
APOE �4 allele who were younger than those with 0
APOE �4 alleles, suggesting that APOE �4 may shift
risk of AD earlier. However, this effect was modified
by sex, showing men with 2 APOE �4 alleles were
younger than men with 0 or 1 APOE �4 allele, while
women with 1 or 2 APOE �4 alleles were significantly
younger than women with 0 APOE �4 alleles.

Previous research has demonstrated an APOE �4
dose effect of increased AD risk and undesirable
changes to a variety of AD biomarkers in partici-
pants with MCI. APOE �4 carriers with MCI are at
increased risk of converting to AD [30], have poorer
cognitive function [12, 31, 32], smaller hippocam-
pal volumes [12, 31, 33, 34], lower CSF amyloid- �,
higher CSF hyperphosphorylated tau [35] and higher
total tau [14]. Our study expands this work to exam-
ine how APOE �4 dose and sex modify risk based on
AD biomarkers.

Our general finding of a significant APOE �4 dose
effect on hippocampal and amygdala volumes in
this sample of individuals with MCI suggests that
each APOE �4 allele has a measurable effect on
regional brain structure. While not all studies have
found this [36], our result is supported by previous
research which found reduced hippocampal volume
[33] and cognition [31] with each APOE �4 allele
and reduced amygdala volume for APOE �4 carri-
ers versus non-carriers [36, 37] in individuals with
MCI. Furthermore, our results show that, while there
was a significant APOE �4 dose effect on hippocam-
pal and amygdala volume for both men and women,
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Fig. 5. Predicted values for cross-sectional data of Global Cognition and Episodic Memory by APOE �4 allele and sex. Predicted values
generated from cross-sectional data for global cognition (MMSE, A) and episodic memory (Logical Memory Immediate, B and Delayed
Recall, C), separately for men and women. Lines represent intercept and slope of predicted values over the lifespan, grouped by number of
APOE �4 alleles. Women with 2 APOE �4 alleles performed worse than men with 2 APOE �4 alleles on delayed memory (65–69 years,
p = 0.042) and MMSE (70–74 years, p = 0.002) at specific 5-year age bins.

the same was not true for cognition. In our analysis
of cognitive performance, women had worse perfor-
mance with each APOE �4 allele, while men with
1 and 2 APOE �4 alleles did not differ, suggesting
a differential impact of APOE �4 allele between the
sexes on cognition. Importantly, at 1 and 2 APOE
�4 alleles performance on delayed memory was sig-
nificantly worse for women than men, even though
women were also significantly younger.

To date, the effects of APOE �4 dose on brain struc-
ture and cognition, two important AD biomarkers,
have not been demonstrated conclusively in women
and men. The research predominantly informing cur-
rent views on the interaction between APOE �4 and

sex reports differences in AD risk. These studies
reported that APOE �4 confers greater AD risk to
women than men. Specifically, it has been reported
in a number of studies that one copy of the �4 allele is
sufficient to increase AD risk in women, whereas two
copies but not one, increase risk in men [5, 7, 9, 38,
39]. A similar finding was demonstrated by Fleisher
et al., who reported an APOE �4 by sex interaction
in the hippocampal volume of MCI subjects [12].
Recent studies reported that women with higher amy-
loid burden were at greater risk of cognitive decline
than men and that this effect was even stronger in
women who were APOE �4 carriers [14, 40]. Addi-
tionally, women who were APOE �4 carriers had
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greater tau burden than men who were APOE �4
carriers [14], especially in those who had significant
amyloid burden [41]. New genetic targets associated
with amyloid and tau pathology have been impli-
cated in women’s risk for AD, suggesting that the
sex differences may extend beyond APOE �4 [42].

While previous research suggests that APOE �4
relates to AD risk differently for women and men,
a recent meta-analysis by our group reported that
women and men had nearly the same risk of devel-
oping MCI or AD between 55–85 years of age [13].
However, a critical period of risk for APOE �4 women
to convert to MCI was found between 55–70 years
of age whereas APOE �4 women to convert to AD
were at elevated risk between 65–75 years of age.
This study, which aggregated data for nearly 58,000
participants, suggests that the sex-specific effect of
APOE �4 may not differ, but that sex differences are
evident at critical time periods. Although preliminary
and exploratory in nature, the trends in our current
findings support this critical period in women with 2
APOE �4 alleles compared to men with 2 APOE �4
alleles between 65–69 years of age in delayed mem-
ory performance. Additionally, this same relationship
was identified for global cognition, but for those 5
years older, between 70–74 years of age, positing a
temporal relationship of differences in memory pre-
ceding differences in global cognition, although this
cannot be directly assessed in our cross-sectional
analysis.

Potential mechanistic explanations for the consis-
tent sex and APOE �4 differences may be related
to hormonal changes experienced by women dur-
ing menopause, which has cascading effects in the
subsequent aging process. Higher levels of estradiol
are associated with better cognitive performance [43]
and estrogen has been shown to reduce vulnerability
to cell death in the hippocampus in the presence of
amyloid-� [44], which may be exacerbated in APOE
�4 carriers because of higher amyloid-� burden [45,
46].

A primary strength of our study is the direct,
intentional analysis of sex differences in AD by uti-
lizing large, retrospective datasets to examine subtle
and understudied effects. Obtaining and harmonizing
large datasets to increase the sample of participants
with 2 APOE �4 alleles was a necessary task to exam-
ine APOE �4 dose effects stratified by sex and age,
although the study was underpowered for multiple
comparison correction likely due to subtle sex and
APOE �4 dose effects. However, there are limitations
to conducting retrospective analyses. Many aging

cohorts have only a limited number of cognitive tests
available for analysis. There is some variability in
how MCI is defined (see Supplementary Materials).
Other risk factors that may differ between women
and men, such as smoking, alcohol use, and car-
diovascular disease [47], were not available in all
the datasets and therefore, not included in our mod-
els. Other sex-specific considerations may also be
contributing to this, such higher rates of mortality
due to cardiovascular disease and stroke in men that
might lead to a surviving population of older adult
men who are healthier than their female counterparts
[48]. Additionally, ascertainment bias poses several
problems for population-based studies. For example,
our cohort is enriched for APOE �4 carriers beyond
what is observed in the general population. Indi-
viduals with a family history of AD may be more
likely to participate [49], and importantly, these stud-
ies may oversample healthier individuals due to the
difficulty for sick participants to participate in fol-
low up data collection [50]. Lastly, the combination
of 1.5T and 3T MRI scans is less favorable than
MRI scans from the same scanner and/or MRI field
strength.

Our findings, taken together with previous litera-
ture, support the hypothesis that detrimental effects
conferred by APOE �4 are dose-dependent and sex-
specific in the MCI stage. While the importance of
APOE �4 is key to understanding AD risk, sex as
a biological factor may additionally modify level of
risk at critical time periods.
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